“Predictive data modeling of large and fast streams of spatio/spectro temporal data using neuromorphic computation”
Presenters: N.Kasabov, R.Pears, R.Hartono, KEDRI/AUT
—————————————————————-
The talk presents first the main principles of neuromorphic computation and spiking neural networks (SNN), before it introduces the NeuCube SNN architecture developed at KEDRI (www.kedri.aut.ac.nz). A methodology of using NeuCube for predictive data modelling of large and fast streams of data is presented and demonstrated on a small scale example.
The implementation of NeuCube-based models on the high performance SNN platform SpiNNaker, of millions of processing elements, developed at the University of Manchester is discussed. Future work of exploring NeuCube/SpiNNaker models and systems for SKA data is discussed.
———————————————————————
Professor Nikola Kasabov – bio